[1]郑登登,季 韬,王国杰.水玻璃模数对AAS砂浆自收缩的影响[J].水利与建筑工程学报,2019,(05):102-111.[doi:10.3969/j.issn.1672-1144.2019.05.017]
点击复制

水玻璃模数对AAS砂浆自收缩的影响()
分享到:

《水利与建筑工程学报》[ISSN:1672-1144/CN:61-1404/TV]

卷:
期数:
2019年05期
页码:
102-111
栏目:
出版日期:
2019-10-30

文章信息/Info

作者:
郑登登1季 韬2王国杰1
1.福建江夏学院工程学院,福建福州350108;2.福州大学土木工程学院,福建福州350108
关键词:
水玻璃模数碱矿渣水泥自收缩孔结构
分类号:
TU526
DOI:
10.3969/j.issn.1672-1144.2019.05.017
文献标志码:
A
摘要:
碱矿渣水泥与普通硅酸盐水泥相比具有节能环保的特点,但较大的自收缩限制了其在实际工程中的推广应用。为了厘清碱矿渣水泥基材料自收缩机理,研究了不同碱掺量时水玻璃模数对碱矿渣砂浆自收缩的影响。采用压汞仪分析了净浆试件的孔结构,采用红外光谱分析、同步热分析、X射线粉末衍射分析、29Si固体核磁共振和23Na固体核磁共振等分析了净浆试件的水化产物。研究表明,碱矿渣水泥中水玻璃模数的提高使得:孔结构细化,氢氧钙石减少,吸附Na+总量增加,C-(A-)S-H聚合度的提高速度加快,碱矿渣砂浆自收缩增大。

参考文献/References:

[1] JiangM,ChenX,RajabipourF,etal.Comparativelifecycleassessmentofconventional,glasspowder,andalka- li-activatedslagconcreteandmortar[J].JournalofInfra- structureSystems,2014,20(4):04014020.
[2] CollinsF,SanjayanJG.Effectofporesizedistributionondryingshrinkingofalkali-activatedslagconcrete[J].Ce- mentandConcreteResearch,2000,30(9):1401-1406.
[3] NetoAAM,CincottoMA,RepetteW.Dryingandau- togenousshrinkageofpastesandmortarswithactivatedslagcement[J].CementandConcreteResearch,2008,38(4):565-574.
[4] AllahverdiA,ShaverdiB,KaniEN.Influenceofsodi- 110 水利与建筑工程学报                  第17卷umoxideonpropertiesoffreshandhardenedpasteofal- kali-activatedblast-furnaceslag[J].ActaMedicaIrani- ca,2010,49(8):304-314.
[5] CartwrightC,RajabipourF,RadlińskaA.Shrinkagecharacteristicsofalkali-activatedslagcements[J].Jour- nalofMaterialsinCivilEngineering,2015,27(7):B4014007.
[6] SakulichA R,BentzD P.Mitigationofautogenousshrinkageinalkaliactivatedslagmortarsbyinternalcu- ring[J].MaterialsandStructures/MateriauxEtConstruc- tions,2013,46(8):1355-1367.
[7] SongC,ChoiYC,ChoiS.Effectofinternalcuringbysuperabsorbentpolymers-Internalrelativehumidityandautogenousshrinkageofalkali-activatedslagmortars[J].ConstructionandBuildingMaterials,2016,123:198-206.
[8] NetoAAM,CincottoMA,RepetteW.Mechanicalprop- erties,dryingandautogenousshrinkageofblastfurnaceslagactivatedwithhydratedlimeandgypsum[J].CementandConcreteComposites,2010,32(4):312-318.
[9] 张晓华,张仕林,龙 倩.再生混凝土收缩性能及模型[J].水利与建筑工程学报,2016,14(5):105-109.
[10] 付立彬,肖保辉,付 娟.再生与天然骨料透水混凝土收缩性能试验研究[J].水利与建筑工程学报,2018,16(2):32-35.
[11] LeeNK,JangJG,LeeHK.Shrinkagecharacteristicsofalkali-activatedflyash/slagpasteandmortaratearlyages[J].CementandConcreteComposites,2014,53:239-248.
[12] ASTMInternational.Standardpracticeforuseofappara- tusforthedeterminationoflengthchangeofhardenedcementpaste,mortar,andconcrete:C490/C490M-11[S].USA:WestConshohocken,PA,2014.
[13] SaotGL,BenHahaM,WinnefeldF,etal.Hydrationdegreeofalkali-activatedslags:A29SiNMR study[J].JournaloftheAmericanCeramicSociety,2011,94(12):4541-4547.
[14] JeongY,ParkH,JunY,etal.Influenceofslagchar- acteristicsonstrengthdevelopmentandreactionproductsinaCaO-activatedslagsystem[J].CementandCon- creteComposites,2016,72:155-167.
[15] MagiM,LippmaaE,SamosonA,etal.Solid-statehigh-resolutionsilicon-29chemicalshiftsinsilicates[J].TheJournalofPhysicalChemistry,1984,88(8):1518-1522.
[16] MyersRJ,BernalSA,GehmanJD,etal.TheroleofAlincross-linkingofalkali-activatedslagcements[J].JournaloftheAmericanCeramicSociety,2015,98(3):996-1004.
[17] RenaudinG,RussiasJ,LerouxF,etal.StructuralcharacterizationofC-S-HandC-A-S-Hsamples-PartII:Localenvironmentinvestigatedbyspectro- scopicanalyses[J].JournalofSolidStateChemistry,2009,182(12):3320-3329.
[18] ProvisJL,MyersRJ,WhiteCE,etal.X-raymic- rotomographyshowsporestructureandtortuosityinalka- li-activatedbinders[J]. Cementand ConcreteRe- search,2012,42(6):855-864.
[19] LodeiroIG,MacpheeDE,PalomoA,etal.EffectofalkalisonfreshC-S-Hgels.FTIRanalysis[J].Ce- mentandConcreteResearch,2009,39(3):147-153.
[20] Burciaga-DíazO, Escalante-GarcíaJI.Structure,mechanismsofreaction,andstrengthofanalkali-activa- tedblast-furnaceslag[J].JournaloftheAmericanCe- ramicSociety,2013,96(12):3939-3948.
[21] WhiteCE,DaemenLL,HartlM,etal.Intrinsicdifferencesinatomicorderingofcalcium(alumino)sili- catehydratesinconventionalandalkali-activatedce- ments[J].CementandConcreteResearch,2015,67:66-73.
[22] L’HpitalE,LothenbachB,KulikDA,etal.Influ- enceofcalcium tosilicaratioonaluminium uptakeincalciumsilicatehydrate[J].CementandConcreteRe- search,2016,85:111-121.
[23] PuertasF,PalaciosM,ManzanoH,etal.AmodelfortheC-A-S-Hgelformedinalkali-activatedslagce- ments[J].JournaloftheEuropeanCeramicSociety,2011,31(12):2043-2056.
[24] Garcia-LodeiroI,Fernández-JiménezA,PalomoA,etal.CompatibilitystudiesbetweenN-A-S-HandC-A-S-Hgels.StudyintheternarydiagramNa2OCaO-Al2O3 -SiO2 -H2O[J].CementandConcreteResearch,2011,41(9):923-931.
[25] YeH,RadlińskaA.Quantitativeanalysisofphaseas- semblageandchemicalshrinkageofalkali-activatedslag[J].JournalofAdvancedConcreteTechnology,2016,14(5):245-260.
[26] LabbezC,PochardI,BoJ,etal.C-S-H/solutioninterface:experimentalandmontecarlostudies[J].Ce- mentandConcreteResearch,2011,41(2):161-168.
[27] RavikumarD,NeithalathN.Effectsofactivatorcharac- teristicsonthereactionproductformationinslagbindersactivatedusingalkalisilicatepowderandNaOH[J].CementandConcreteComposites,2012,34(7):809- 818.
[28] PegadoL,LabbezC,ChurakovS.Mechanismofalu- miniumincorporationintoC-S-Hfromabinitiocalcu- lations[J].JournalofMaterialsChemistryA,2014,2(10):3477-3483.

备注/Memo

备注/Memo:
收稿日期:2019-09-04     修稿日期:2019-09-30基金项目:国家自然科学基金项目“碱矿渣水泥拉伸徐变机理研究”(51878179);福建省科技计划项目“滨海大气区混凝土结构高耐久性成套关键技术研发”(2019H6025)作者简介:郑登登(1980—),男,福建福州人,博士,主要从事环保水泥基材料方面的工作。E-mail:4437216@qq.Com
更新日期/Last Update: 2019-10-30