[1]姜天华,胡宇成,张秀成.纤维增强地聚合物复合材料研究综述[J].水利与建筑工程学报,2022,(06):123-133.[doi:10.3969/j.issn.1672-1144.2022.06.019]
点击复制

纤维增强地聚合物复合材料研究综述()
分享到:

《水利与建筑工程学报》[ISSN:1672-1144/CN:61-1404/TV]

卷:
期数:
2022年06期
页码:
123-133
栏目:
出版日期:
2022-12-31

文章信息/Info

作者:
姜天华12 胡宇成12 张秀成12
1.武汉科技大学 城市建设学院,湖北 武汉 430065;2.东南沿海工程结构防灾减灾福建省高校工程研究中心,福建 莆田 351100
关键词:
纤维增强地聚合物复合材料(FRGC)地聚物脆性特征物理性能能量吸收
分类号:
TU528.572;TU528.58
DOI:
10.3969/j.issn.1672-1144.2022.06.019
摘要:
地聚物(Geopolymer)因具有低能耗、低碳排放量等特点是一种新型化学激发胶凝材料,符合绿色可持续发展理念。但当受到弯曲和拉伸应力时,地聚物和水泥一样呈现脆性特征,两者都需要纤维加固来控制裂纹扩展以及增强韧性。纤维可以显著提升地质聚合物各方面的工作性能,通过总结国内外关于纤维增强地聚合物复合材料(FRGC)的论文,对比各种类型的纤维增强材料的优缺点,分析纤维在FRGC的物理性能、能量吸收和耐高温性能等方面的影响。可以明显看出,每种 FRGC都存在各自最佳的纤维掺入量,不同种类的纤维类型对 FRGC力学性能和机械性能增强效果各异,可为进一步研究其性能及应用提供参考。

参考文献/References:

[1] 李 琛.2021年水泥行业结构调整发展报告[J].中国水泥,2022(1):10-17.
[2] WorrellE,PriceL,MartinN,etal.Carbondioxidee-missionsfromtheglobalcementindustry[J].AnnualRe-viewofEnergyandtheEnvironment,2001,26(1):303-329.
[3] LingYF,WangKJ,LiW G,etal.Effectofslagonthemechanicalpropertiesandbondstrengthofflyash-basedengineeredgeopolymercomposites[J].CompositesPartB:Engineering,2019,164:747-757.
[4] XieJH,WangJJ,ZhangBX,etal.PhysicochemicalpropertiesofalkaliactivatedGGBSandflyashgeopoly-mericrecycledconcrete[J].ConstructionandBuildingMaterials,2019,204:384-398.
[5] RamamohanaB,GopinathanP,ChandrasekharI.Engi-neeringpropertiesofGGBS&flyashsynthesizedgeopoly-merconcreteatdifferentenvironmentalconditionsbycomparingwithconventionalconcrete[J].InternationalJournalofRecentTechnologyandEngineering,2019,7(5S4):399-407.
[6] GopalakrishnanR,ChinnarajuK.Durabilityofambientcuredaluminasilicateconcretebasedonslag/flyashblendsagainstsulfateenvironment[J].ConstructionandBuildingMaterials,2019,204:70-83.
[7] YasaswiniK,RaoAV.Behaviourofgeopolymerconcreteatelevatedtemperature[J].MaterialsToday:Proceed-ings,2020,33:239-244.
[8] GuoXL,PanXJ.Mechanicalpropertiesandmecha-nismsoffiberreinforcedflyash-steelslagbasedgeopoly-mermortar[J].ConstructionandBuildingMaterials,2018,179:633-641.
[9] 樊晋源,姜 屹,王利民,等.剑麻 -PVA混杂纤维增129 第 6期 姜天华,等:纤维增强地聚合物复合材料研究综述强地聚物抗硫酸盐侵蚀性能研究[J].硅酸盐通报,2020,39(5):1430-1437,1443.
[10] FarisM A,AbdullahM M AB,MuniandyR,etal.Comparisonofhookandstraightsteelfibersadditiononmalaysianflyash-based geopolymerconcreteon theslump,density,waterabsorptionandmechanicalprop-erties[J].Materials,2021,14(5):1310.
[11] BhuttaA,FarooqM,BorgesPHR,etal.Influenceoffiberinclinationangleonbond-slipbehaviorofdifferentalkali-activatedcompositesunderdynamicandquasi-staticloadings[J].CementandConcreteResearch,2018,107:236-246.
[12] BhuttaA,BorgesPHR,ZanottiC,etal.Flexuralbe-haviorofgeopolymercompositesreinforcedwithsteelandpolypropylenemacrofibers[J].CementandCon-creteComposites,2017,80:31-40.
[13] KoenigA,WuestemannA,GattiF,etal.Flexuralbe-haviourofsteelandmacro-PPfibrereinforcedconcretesbasedonalkali-activatedbinders[J].ConstructionandBuildingMaterials,2019,211:583-593.
[14] AsraniNP,MuraliG,ParthibanK,etal.Afeasibilityofenhancingtheimpactresistanceofhybridfibrousgeopolymercomposites: Experiments and modelling[J].ConstructionandBuildingMaterials,2019,203:56-68.
[15] KhanMZN,HaoYF,HaoH.Mechanicalpropertiesandbehaviourofhigh-strengthplainandhybrid-fiberre-inforcedgeopolymercompositesunderdynamicsplittingtension[J].CementandConcreteComposites,2019,104:103343.
[16] RanjbarN,TalebianS,MehraliM,etal.Mechanismsofinterfacialbondinsteelandpolypropylenefiberrein-forcedgeopolymercomposites[J].CompositesScienceandTechnology,2016,122:73-81.
[17] ShahSFA,ChenB,OderjiSY,etal.Comparativestudyontheeffectoffibertypeandcontentontheper-formanceofone-partalkali-activatedmortar[J].Con-structionandBuildingMaterials,2020,243:118221.
[18] AkturkB,AkcaAH,KizilkanatA B.Fracturere-sponseoffiber-reinforcedsodium carbonateactivatedslagmortars[J].ConstructionandBuildingMaterials,2020,241:118128.
[19] Mermerda爧K,I·pekS,MahmoodZ.Visualinspectionandmechanicaltestingofflyash-basedfibrousgeopoly-mercompositesunderfreeze-thawcycles[J].Construc-tionandBuildingMaterials,2021,283:122756.
[20] WongsaA,KunthawatwongR,NaenudonS,etal.Nat-uralfiberreinforcedhighcalcium flyashgeopolymermortar[J].ConstructionandBuildingMaterials,2020,241:118143.
[21] GaneshA C,MuthukannanM.Developmentofhighperformance sustainable optimized fiber reinforcedgeopolymerconcrete and prediction ofcompressivestrength[J].JournalofCleanerProduction,2021,282:124543.
[22] BhuttaA,FarooqM,BanthiaN.Performancecharac-teristicsofmicrofiber-reinforcedgeopolymermortarsforrepair[J].ConstructionandBuildingMaterials,2019,215:605-612.
[23] DengL,MaY,HuJ,etal.Preparationandpiezoresis-tivepropertiesofcarbonfiber-reinforcedalkali-activatedflyash/slagmortar[J].ConstructionandBuildingMa-terials,2019,222:738-749.
[24] RashediA,MarzoukiR,RazaA,etal.Mechanical,fracture,andmicrostructuralassessmentofcarbon-fiber-reinforcedgeopolymercompositescontainingNa2O[J].Polymers,2021,13(21):3852.
[25] LiuJ,WuCQ,LiJ,etal.Projectileimpactresistanceoffibre-reinforcedgeopolymer-basedultra-highperform-anceconcrete(G-UHPC)[J].ConstructionandBuild-ingMaterials,2021,290:123189.
[26] MastaliM,KinnunenP,IsomoisioH,etal.Mechanicalandacousticpropertiesoffiber-reinforcedalkali-activa-tedslagfoamconcretescontaininglightweightstructuralaggregates[J].ConstructionandBuildingMaterials,2018,187:371-381.
[27] CelikA,YilmazK,CanpolatO,etal.High-tempera-turebehaviorandmechanicalcharacteristicsofboronwasteadditivemetakaolinbasedgeopolymercompositesreinforcedwithsyntheticfibers[J].ConstructionandBuildingMaterials,2018,187:1190-1203.
[28] WangY,HuS,HeZ.Mechanicalandfractureproper-tiesofgeopolymerconcretewithbasaltfiberusingdigitalimagecorrelation[J].TheoreticalandAppliedFractureMechanics,2021,112:102909.
[29] FarooqM,BhuttaA,BanthiaN.Tensileperformanceofeco-friendlyductilegeopolymercomposites(EDGC)in-corporatingdifferentmicro-fibers[J].CementandCon-creteComposites,2019,103:183-192.
[30] AlrefaeiY,DaiJG.Tensilebehaviorandmicrostruc-tureofhybridfiberambientcuredone-partengineeredgeopolymercomposites[J].ConstructionandBuildingMaterials,2018,184:419-431.
[31] ShaikhFUA,FairchildA,ZammarR.Comparativestrainanddeflectionhardeningbehaviourofpolyethylenefibrereinforcedambientairandheatcuredgeopolymercomposites[J].ConstructionandBuildingMaterials,2018,163:890-900.130 水利与建筑工程学报 第 20卷
[32] Nguy^e~nHH,ChoiJI,KimHK,etal.Mechanicalpropertiesandself-healingcapacityofeco-friendlyultra-highductilefiber-reinforcedslag-basedcomposites[J].CompositeStructures,2019,229:111401.
[33] KanLL,ShiRX,ZhaoYJ,etal.Feasibilitystudyonusingincinerationflyashfrommunicipalsolidwastetodevelophighductilealkali-activatedcomposites[J].JournalofCleanerProduction,2020,254:120168.
[34] daSilvaAlvesLC,dosReisFerreiraRA,MachadoLB,etal.Optimizationofmetakaolin-basedgeopolymerreinforcedwithsisalfibersusingresponsesurfaceme-thology[J].IndustrialCropsandProducts,2019,139:111551.
[35] KorniejenkoK,FrczekE,PytlakE,etal.Mechanicalpropertiesofgeopolymercompositesreinforcedwithnat-uralfibers[J].ProcediaEngineering,2016,151:388-393.
[36] AlomayriT,ShaikhFUA,LowIM.Synthesisandmechanical properties of cotton fabric reinforcedgeopolymercomposites[J].CompositesPartB:Engi-neering,2014,60:36-42.
[37] dosSantosGZB,deOliveiraDP,deAlmeidaMeloFilhoJ,etal.Sustainablegeopolymercompositerein-forcedwithsisalfiber:durabilitytowettinganddryingcycles[J].JournalofBuildingEngineering,2021,43:102568.
[38] PalanisamyP,KumarPS.Effectofmolarityingeopol-ymerearthbrickreinforcedwithfibrouscoirwastesu-singsandysoilandquarrydustasfineaggregate.(Casestudy)[J].CaseStudiesinConstructionMaterials,2018,8:347-358.
[39] AbbassM,SinghD,SinghG.Propertiesofhybridgeopolymerconcretepreparedusingricehuskash,flyashandGGBSwithcoconutfiber[J].MaterialsToday:Proceedings,2021,45:4964-4970.
[40] NataliMurriA,MedriV,LandiE.Productionandthermomechanicalcharacterization ofwool-geopolymercomposites[J].JournaloftheAmericanCeramicSocie-ty,2017,100(7):2822-2831.
[41] AlzeerM,MacKenzieKJD.Synthesisandmechanicalpropertiesofnewfibre-reinforcedcompositesofinorgan-icpolymerswithnaturalwoolfibres[J].JournalofMa-terialsScience,2012,47(19):6958-6965.
[42] 郭光玲.钢纤维增强混凝土的制备及力学性能研究[J].功能材料,2020,51(11):11165-11170.
[43] 赵秋红,董 硕,谢 萌.钢纤维增强地聚物再生混凝土单轴受压全曲线试验[J].建筑结构学报,2022,43(11):255-265.
[44] 张伟杰,谢子令,周华飞.定向钢纤维增强地质聚合物复合梁的抗弯性能[J].建筑材料学报,2021,24(6):1307-1314.
[45] RanjbarN,ZhangM Z.Fiber-reinforcedgeopolymercomposites:areview[J].CementandConcreteCom-posites,2020,107:103498.
[46] 叶邦土,蒋金洋,王文灏,等.玄武岩纤维及其增强水泥基材料的研究进展[J].材料导报,2013,27(19):102-108.
[47] 郭昌盛,杨建忠,朱明辉.几种常见无机非金属纤维改性研究进展[J].纺织科技进展,2015(2):11-13,18.DOI:10.19507/j.cnki.1673-0356.2015.02.004.
[48] 喻 松,胡 翔,赵一帆,等.玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J].材料导报,2022,36(9):93-101.
[49] 郭正超,宋坪恒,李健平,等.纤维对地聚合物抗压强度的影响研究[J].硅酸盐通报,2017,36(9):3155-3158.
[50] 吴 伟,冯 虎.碳纤维混凝土动态力学特性试验研究[J].复合材料科学与工程,2021(10):13-18.
[51] 王志航,白二雷,许金余,等.聚合物改性碳纤维增强混凝土的动态压缩力学性能[J].复合材料学报,2022,40:1-12.
[52] 马 帅,金珊珊.碳纤维增强复合材料对钢筋混凝土的加固作用[J].材料导报,2022,36(S1):252-256.
[53] DeborahDLChung.CarbonComposites:CompositeswithCarbonFibers,Nanofibers,andNanotubes[M].2nded.Amsterdam:Butterworth-Heinemann,2017.
[54] BunsellA,SomerA.Thetensileandfatiguebehaviourofcarbonfibres[J].Plast.,UbberCompos.Process.Appl.,1992,18(4):263-267.
[55] 朱靖塞,许金余,罗 鑫,等.碳纤维增强地聚物混凝土韧性评价指标的对比研究[J].建筑材料学报,2014,17(2):303-308.
[56] PaivaJMF,SantosADN,RezendeMC.Mechanicalandmorphologicalcharacterizationsofcarbonfiberfab-ricreinforcedepoxycompositesusedinaeronauticalfield[J].MaterialsResearch,2009,12(3):367-374.
[57] 柏佳文,魏 洋,张依睿,等.新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J].复合材料学报,2021,38(9):3084-3093.
[58] DhandV,MittalG,RheeKY,etal.Ashortreviewonbasaltfiberreinforcedpolymercomposites[J].Compos-itesPartB:Engineering,2015,73:166-180.
[59] 李 建.短切玄武岩纤维对矿渣粉煤灰混凝土力学性能和微观结构的影响[J].硅酸盐通报,2017,36(2):727-732,737.
[60] CaoM L,MaoYQ,KhanM,etal.Differenttestingmethodsforassessingthesyntheticfiberdistributionincement-basedcomposites[J].ConstructionandBuild-131 第 6期 姜天华,等:纤维增强地聚合物复合材料研究综述ingMaterials,2018,184:128-142.
[61] SiddiqueR,KhatibJ,KaurI.Useofrecycledplasticinconcrete:areview[J].Wastemanagement,2008,28(10):1835-1852.
[62] WangQ,LaiMH,ZhangJ,etal.Greenerengineeredcementitiouscomposite(ECC)———Theuseofpozzola-nicfillersandunoiledPVAfibers[J].ConstructionandBuildingMaterials,2020,247:118211.
[63] NematollahiB,QiuJ,YangEH,etal.Micromechan-icsconstitutivemodellingand optimization ofstrainhardeninggeopolymercomposite[J].CeramicsInterna-tional,2017,43(8):5999-6007.
[64] 张云升,孙 伟,李宗津.PVA短纤维和粉煤灰对地聚合物基复合材料流变学行为和弯曲性能的影响[J].复合材料学报,2008(6):166-174.
[65] KorniejenkoK,LinW T,ˇSimonováH.Mechanicalpropertiesofshortpolymerfiber-reinforcedgeopolymercomposites[J].JournalofCompositesScience,2020,4(3):128.
[66] AhmedSFU,RonnieZ.Ductilebehaviorofpolyethy-lenefibre reinforced geopolymercomposite[C]//MATECWebofConferences.EDPSciences,2017,97:01047.
[67] 潘志伟,马东鹏,廖雨田,等.天然纤维/环氧树脂-混凝土的力学性能及老化规律[J].复合材料学报,2019,36(6):1510-1519.
[68] 杨世玉,赵人达,曾宪帅,等.用自然纤维增强地聚物材料:综述[J].材料导报,2021,35(7):7107-7113.
[69] SarminSN.Theinfluenceofdifferentwoodaggregatesonthepropertiesofgeopolymercomposites[C]//KeyEngineeringMaterials.TransTechPublicationsLtd,2017,723:74-79.
[70] ZulfiatiR,IdrisY.Mechanicalpropertiesofflyash-basedgeopolymerwithnaturalfiber[J].JournalofPhysics:ConferenceSeries,2019,1198(8):082021.
[71] 李超飞,苏有文,陈国平.植物纤维混凝土的研究现状[J].混凝土,2013(5):55-56,61.
[72] IslamMS,AhmedSJU.Influenceofjutefiberoncon-creteproperties[J].ConstructionandBuildingMateri-als,2018,189:768-776.
[73] 牛荻涛,罗 扬,苏 丽,等.玄武岩-聚丙烯混杂纤维增强混凝土气孔结构分形分析[J].材料导报,2022,36(13):115-120.
[74] GanesanN,IndiraPV.Engineeringpropertiesofsteelfibrereinforcedgeopolymerconcrete[J].AdvancesinConcreteConstruction,2013,1(4):305.
[75] KhanMZN,HaoY,HaoH,etal.Mechanicalprop-ertiesofambientcuredhighstrengthhybridsteelandsyntheticfibersreinforcedgeopolymercomposites[J].CementandConcreteComposites,2018,85:133-152.
[76] RovnaníkP,ˇSimonováH,TopoláˇrL,etal.Carbonnanotubereinforcedalkali-activatedslagmortars[J].ConstructionandBuildingMaterials,2016,119:223-229.
[77] BasharII,AlengaramUJ,JumaatM Z,etal.Engi-neeringpropertiesandfracturebehaviourofhighvolumepalmoilfuelashbasedfibrereinforcedgeopolymercon-crete[J].ConstructionandBuildingMaterials,2016,111:286-297.
[78] RanjbarN,MehraliM.Hightensilestrengthflyashbasedgeopolymercompositeusingcoppercoatedmicrosteelfiber[J].ConstructionandBuildingMaterials,2016,112:629-638.
[79] AbdullahM,TahirMFM,TajudinM,etal.Studyonthe geopolymer concrete properties reinforced withhookedsteelfiber[J].IOPConferenceSeries:Materi-alsScienceandEngineering,2017,267(1):012014.
[80] RanjbarN,MehraliM,BehniaA,etal.Acomprehen-sivestudyofthepolypropylenefiberreinforcedflyashbasedgeopolymer[J]. PlosOne,2016,11(1):e0147546.
[81] 杨世玉,赵人达,曾宪帅,等.地聚物混凝土长期时变变形研究进展[J].华南理工大学学报(自然科学版),2020,48(12):91-104.
[82] SuZH,GuoL,ZhangZH,etal.Influenceofdiffer-entfibersonpropertiesofthermalinsulationcompositesbasedongeopolymerblendedwithglazedhollowbead[J].ConstructionandBuildingMaterials,2019,203:525-540.
[83] BaradaranS,MoghaddamE,BasirunW J,etal.Me-chanicalpropertiesandbiomedicalapplicationsofananotubehydroxyapatite-reducedgrapheneoxidecom-posite[J].Carbon,2014,69:32-45.
[84] AydnS,BaradanB.Theeffectoffiberpropertiesonhighperformancealkali-activatedslag/silicafumemor-tars[J].CompositesPartB:Engineering,2013,45(1):63-69.
[85] VilaplanaJL,BaezaFJ,GalaoO,etal.Mechanicalpropertiesofalkaliactivatedblastfurnaceslagpastesre-inforcedwithcarbonfibers[J].ConstructionandBuild-ingMaterials,2016,116:63-71.
[86] 李邵军,匡智浩,邱士利,等.岩石脆性评价方法研究进展及适应性探讨[J].工程地质学报,2022,30(1):59-70.
[87] GülsanM E,AlzeebareeR,RasheedAA,etal.De-velopmentofflyash/slagbasedself-compactinggeopoly-merconcreteusingnano-silicaandsteelfiber[J].Con-structionandBuildingMaterials,2019,211:271-283.132 水利与建筑工程学报 第 20卷
[88] 李成金,李 静,夏锦红.玄武岩-PVA纤维协同增强轻骨料混凝土抗弯拉及抗冲击性能[J].复合材料科学与工程,2022(6):70-75,121.
[89] 陆 俊,王建苗,李 静.纤维增强再生混凝土抗拉性能的研究进展[J].建材技术与应用,2021(5):8-13.
[90] KarimipourA,deBritoJ.Influenceofpolypropylenefi-bresandsilicafumeonthemechanicalandfracturepropertiesofultra-high-performancegeopolymerconcrete[J].ConstructionandBuildingMaterials,2021,283:122753.
[91] 徐礼华,黄 彪,李 彪,等.循环荷载作用下聚丙烯纤维混凝土受压应力-应变关系研究[J].土木工程学报,2019,52(4):1-12.
[92] 牛海成,高锦龙,李博涵,等.PVA-钢纤维对高强再生骨料混凝土梁抗弯性能的影响[J].复合材料学报,2021.https://kns.cnki.net/kcms/detail/11.1801.TB.20211110.0934.006.html.
[93] KavipriyaS,DeepanrajCG,DineshS,etal.FlexuralstrengthofLightweightgeopolymerconcreteusingsisalfibres[J].MaterialsToday:Proceedings,2021,47:5503-5507.
[94] BernalS,DeGutierrezR,DelvastoS,etal.Perform-anceofanalkali-activatedslagconcretereinforcedwithsteelfibers[J].ConstructionandbuildingMaterials,2010,24(2):208-214.
[95] 于泽明,陈 艳,马嵘萍,等.动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J].材料导报,2021,35(S2):669-677.
[96] Nedeljkovic'M,Lukovic'M,VanBreugelK,etal.De-velopmentandapplicationofanenvironmentallyfriendlyductilealkali-activatedcomposite[J].JournalofClean-erProduction,2018,180:524-538.
[97] SaranyaP,NagarajanP,ShashikalaAP.BehaviourofGGBS-dolomitegeopolymerconcreteshortcolumnunderaxialloading[J].JournalofBuildingEngineering,2020,30:101232.
[98] SaranyaP,NagarajanP,ShashikalaAP.Performanceevaluationofgeopolymerconcretebeamsundermonoton-icloading[J].Structures,2019,20:560-569.
[99] Al-MajidiM H,LampropoulosA,CundyAB.Tensilepropertiesofanovelfibrereinforcedgeopolymercom-positewithenhancedstrainhardeningcharacteristics[J].CompositeStructures,2017,168:402-427.
[100] WanXM,ShenC,WangPG,etal.Astudyonfrac-turetoughnessofultra-hightoughnessgeopolymercom-positesbasedonDouble-KCriterion[J].ConstructionandBuildingMaterials,2020,251:118851.
[101] XuF,DengX,PengC,etal.MixdesignandflexuraltoughnessofPVA fiberreinforcedflyash-geopolymercomposites[J].ConstructionandBuildingMaterials,2017,150:179-189.
[102] NguyenH,CarvelliV,AdesanyaE,etal.Highper-formancecementitiouscompositefrom alkali-activatedladleslagreinforcedwithpolypropylenefibers[J].Ce-mentandConcreteComposites,2018,90:150-160.
[103] TanyildiziH,YonarY.Mechanicalpropertiesofgeopolymerconcretecontainingpolyvinylalcoholfiberexposedtohightemperature[J].ConstructionandBuildingMaterials,2016,126:381-387.
[104] ArslanAA,UysalM,YlmazA,etal.Influenceofwetting-dryingcuringsystemontheperformanceoffi-berreinforcedmetakaolin-basedgeopolymercomposites[J].ConstructionandBuildingMaterials,2019,225:909-926.
[105] ShaikhFU A,HosanA.Mechanicalpropertiesofsteelfibrereinforcedgeopolymerconcretesatelevatedtemperatures[J].ConstructionandBuildingMaterials,2016,114:15-28.
[106] SamalS.Effectofhightemperatureonthemicrostruc-turalevolutionoffiberreinforcedgeopolymercomposite[J].Heliyon,2019,5(5):e01779.
[107] Sim J,ParkC.Characteristicsofbasaltfiberasastrengtheningmaterialforconcrete structures[J].CompositesPartB:Engineering,2005,36(6/7):504-512.
[108] BeheraP,BahetiV,MilitkyJ,etal.Elevatedtemper-aturepropertiesofbasaltmicrofibrilfilledgeopolymercomposites[J].ConstructionandBuildingMaterials,2018,163:850-860.
[109] MonticelliC,NataliM E,BalboA,etal.Corrosionbehaviorofsteelinalkali-activatedflyashmortarsinthe lightoftheirmicrostructural, mechanicalandchemicalcharacterization[J].CementandConcreteResearch,2016,80:60-68.
[110] GanesanN,AbrahamR,RajSD.Durabilitycharac-teristicsofsteelfiberreinforcedgeopolymerconcrete[J].ConstructionandBuildingMaterials,2015,93:471-476.
[111] TennakoonC,ShayanA,SanjayanJG,etal.Chlo-rideingressandsteelcorrosioningeopolymerconcretebasedonlongterm tests[J].Materials& Design,2017,116:287-299.
[112] ChindaprasirtP,ChaleeW.Effectofsodiumhydroxideconcentrationonchloridepenetrationandsteelcorro-sionofflyash-basedgeopolymerconcreteundermarinesite[J].ConstructionandBuildingMaterials,2014,63:303-310.

备注/Memo

备注/Memo:
收稿日期:2022-07-01 修稿日期:2022-08-06
基金项目:东南沿海工程结构防灾减灾福建省高校工程研究中心开放课题(2019002)
作者简介:姜天华(1971—),男,教授,主要从事桥梁结构理论及工程应用科研及教学工作。E-mail:wustith@ 163.com
通讯作者:胡宇成(1996—),男,硕士研究生,研究方向为纤维增强地聚物。E-mail:853542500@qq.com
更新日期/Last Update: 2022-12-31