[1]张浩文,熊浩.沉管隧道周围砂质海床波致液化进程研究[J].水利与建筑工程学报,2018,(06):207-211.[doi:10.3969/j.issn.1672-1144.2018.06.039]
点击复制

沉管隧道周围砂质海床波致液化进程研究()
分享到:

《水利与建筑工程学报》[ISSN:1672-1144/CN:61-1404/TV]

卷:
期数:
2018年06期
页码:
207-211
栏目:
出版日期:
2018-12-30

文章信息/Info

作者:
张浩文熊浩
苏交科集团股份有限公司,江苏南京210017
关键词:
非线性海床沉管隧道累积液化Boit动力固结方程循环剪应力
分类号:
TU443
DOI:
10.3969/j.issn.1672-1144.2018.06.039
文献标志码:
A
摘要:
考虑土骨架-孔隙流体两相介质动力耦合效应,采用由Masing法则构造的Davidenkov本构模型描述土骨架的非线性滞回特性;在FLAC3D中将Byrne提出的循环荷载作用下土体塑性体积应变增量公式引入到Biot动力固结方程中用以描述海床累积孔压的增长和液化进程。建立可液化海床-沉管非线性动力相互作用二维分析模型,分析结果表明:土的非线性对波浪作用下沉管-海床系统的动力响应有重要影响。沉管周围海床的渐进液化特征不同于远场,远场海床液化仅沿深度发展,呈一维特征。近场海床的液化首先发生在沉管的顶部和底部,随后液化区域沿沉管周边发展,呈明显的二维特征;埋置于海床中的沉管结构改变了海床内的初始应力状态,波浪作用下沉管和海床之间的相互作用导致近场海床产生复杂的应力路径。因此沉管周围海床的循环剪应力比Ccssr明显大于远场海床,较好地解释了沉管周围海床不同于远场的渐进液化特征。

参考文献/References:

[1] 王良民,叶剑红,朱长歧.近海欠密实砂质海床内波致渐进液化特征研究[J].岩土力学,2015,36(12):3584-3588.
[2] AonoT,SumidaK,FujiwaraR,etal.RapidStabilizationoftheImmersed TunnelElement[C]//ProceedingsoftheCoastalStructures2003ConferencePortland,Oregon,Ameri-canSocietyofCivilEngineers,2003:394-404.
[3] KasperT,SteenfeltJS,PedersenLM,etal.Stabilityofanimmersedtunnelinoffshoreconditionsunderdeepwaterwaveimpact[J].CoastalEngineering,2008,55(9):753-760.
[4] ZenK,YamazakiH.Mechanismofwave-inducedliquefac-tionanddensificationinseabed[J].InternationalJournalofRockMechanicsandMiningSciencesandGeomechanicsAb-stracts,1991,28(5):90-104.
[5] SumerBM,TruelsenC,FredseJ.Liquefactionaroundpipelinesunderwaves[J].JournalofWaterway, Port,CoastalandOceanEngineering,2006,132(4):266-275.
[6] ZhaoHY,JengDS,LiaoCC.Parametricstudyofwave-inducedresidualliquefactionaroundanembeddedpipeline[J].AppliedOceanResearch,2016,55:163-180.
[7] ZhaoHY,JengDS,GuoZ,etal.Two-dimensionalmodelforporepressureaccumulationsinthevicinityofaburiedpipeline[J].JournalofOffshoreMechanicsandArcticEngi-neering,2014,136(4):042001.
[8] SeedHB,RahmanMS.Wave-inducedporepressureinre-lationtooceanfloorstabilityofcohesionlesssoils[J].MarineGeotechnology,1978,3(2):123-150.
[9] ZhaoHY,JengDS.Accumulatedporepressuresaroundsubmarinepipelineburiedintrenchlayerwithpartialbackfills[J].JournalofEngineeringMechanics,2016,142(7):0001093.
[10] 李帅帅,周晶.波浪荷载作用下桥墩码头动力响应分析[J].水利与建筑工程学报,2014,15(4):68-73.
[11] 周瑞,李帅帅.波浪荷载作用下桩柱动力响应分析[J].水利与建筑工程学报,2016,14(5):110-113.
[12] ByrnePM.Acyclicshear-volumecouplingandporepres-suremodelforsand[C]//SecondInternationalConferenceonRecentAdvancesinGeotechnicalEarthquakeEngineeringandSoilDynamics,USA:Mssouri,1991:47-56.
[13] YeJH,JengDS.Effectsofshearstressesonthewavein-duceddynamicresponseinaporousseabed:Poro-WSSI(shear)model[J].ActaMechanicaSinica,2011,27(6):898-911.
[14] ItascaConsultingGroup.FastLagrangianAnalysisofCon-tinuain3Dimensions[M].MN,USA:ItascaConsultingGroup,Minneapolis,2002.
[15] ZhaoKai,XiongHao,ChenGuoxing,etal.Cycliccharacteri-zationofwave-inducedoscillatoryandresidualresponseofliq-uefiableseabed[J].EngineeringGeology,2017,227:32-42.
[16] MartinGB,FinnW DL,SeedHB.Fundamentalsofliq-uefactionundercyclicloading[J].JournalofGeotechnicalEngineering,ASCE,1975,101(5):423-438.
[17] YeJH,JengDS.Effectsofshearstressesonthewavein-duceddynamicresponseinaporousseabed:Poro-WSSI(shear)model[J].ActaMechanicaSinica,2011,27(6):898-911.
[18] IshiharaK,TowhataI.Sandresponsetocyclicrotationofprincipalstressdirectionsasinducedbywaveloads[J].SoilsFound,1983,23(4):11-26.
[19] IshiharaK.Liquefactionandflowfailureduringearthquakes[J].Géotechnique,1993,43(3):351-415.

相似文献/References:

[1]石淑慧,范书立.海底和陆地地震动作用下沉管隧道地震响应研究[J].水利与建筑工程学报,2023,(01):193.[doi:10.3969/j.issn.1672-1144.2023.01.029]

备注/Memo

备注/Memo:
收稿日期:20180723 修稿日期:20180824作者简介:张浩文(1982—),男,湖北天门人,高级工程师,主要从事隧道及地下结构工程方面的研究。Email:83249592@qq.com
更新日期/Last Update: 1900-01-01